MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI B.Sc. CHEMISTRY (Affiliated Colleges) LEARNING OUTCOME BASED CURRICULUM (For those who joined from 2023-2024 onwards) VISION AND MISSION OF THE UNIVERSITY

VISION

" To provide quality education to reach the unreached "`

MISSION

• To conduct research, teaching and outreach programmes to improve conditions of human living.

- To create an academic environment that honours women and men of all races, caste, creed, cultures and an atmosphere that values intellectual curiosity, pursuit of knowledge, academic freedom and integrity.
- To offer a wide variety of off-campus educational and training programs, including the use of information technology, to individuals and groups.
- To develop partnership with industries and government so as to improve the quality of the workplace and to serve as ^{catalyst} for economic and cultural development.

• To provide quality / inclusive education, especially for the rural and un-reached segments of economically downtrodden students including women, socially oppressed and differently abled.

1

VISION AND MISSION OF DEPARTMENT

VISION

To make the students excel in the fields of education, fundamental and advanced research in Chemistry by providing quality education so that they can compete and contribute to the varying *technology*.

MISSION

- 1. To teach the students to analyze problems ranging from the basics of Chemistry to advanced level.
- 2. To give the students adequate hands on experience to work in applied fields.
- To train the students to act as a useful member or effective leader of a team in multidisciplinary setting.

PREAMPLE

The B.Sc Chemistry programme is fundamental to the revolution taking place in Science and Technology. The aim of the programme is to impart basic skills and knowledge on the principles of all branches of Chemistry to cater to need of Society, Scientific Organization and Industries in the context of developing needs of our country by providing extensive coverage on the fundamental aspects of chemistry relating applications of chemistry to life systems. This course provides intensive practical training to develop associate and apply various aspects of chemistry in day to day life .The programme prepares the students to achieve success in competitive examinations and make developments of needs of their life.

Eligibility for the B.Sc Chemistry Programme

B.Sc Chemistry is a three year Undergraduate course which one can apply after completing 12th from science stream. Eligibility for the course says that the interested must have science with subjects as Physics, Chemistry, Mathematics, Biology or Computer Science as their main subjects from any recognized board.

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK B.Sc. Chemistry: Programme Outcome, Programme Specific Outcome and Course Outcome

Chemistry is the study of composition and transformation of matter. A science that is centralto energy production, health care, new material development for electronics and other applied fields and environmental protection. Bachelor's degree in Chemistry is the culmination of in-depth knowledge of Inorganic, Organic and Physical chemistry and specialized courses such as Pharmaceutical Chemistry, Spectroscopy, Nanoscience, Forensic Science, Cosmetics & Personal Grooming, Food chemistry, Dairy Chemistry and so on. Thus, this programme helps learners in building a solid foundation for higher studies in Chemistry. The hands on experience the students gain in Practicals enable them to apply theory to solve problems in everyday life, think critically and innovatively. An aptitude for research is instilled through project work and industrial internship.

Students completing this programme will be able to present the concepts of Chemistry clearly and precisely. They can find solutions to pressing problems that mankind is facing today. They can interpret data and present their findings to both scientific community and laymen and have ability to work as a team and evolve to become an entrepreneur

Completion of this programme will also enable the learners to join teaching profession, conducting research in Industry and Government run research labs. A B.Sc chemistry student has the option to diversify to other branches such as Biochemistry, Biotechnology, Forensic Science etc. They have employability opportunities in public and private sector jobs in energy, Pharmaceutical, Food, Cosmetic industries etc...

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK GUIDELINES BASED REGULATIONS FOR UNDER GRADUATE PROGRAMME

B.Sc. Chemistry		
3 Years (UG)		
PO1 :Disciplinary knowledge: Capable of demonstrating comprehensive knowledge		
and understanding of one or more disciplines that form a part of an undergraduate		
Programme of study		
PO2: Communication Skills: Ability to express thoughts and ideas effectively in writing		
and orally; Communicate with others using appropriate media; confidently share one's		
views and express herself/himself; demonstrate the ability to listen carefully, read and write		
analytically, and present complex information in a clear and concise manner to different		
groups		
PO3 :Critical thinking: Capability to apply analytic thought to a body of knowledge;		
analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical		
evidence; identify relevant assumptions or implications; formulate coherent arguments;		
critically evaluate practices, policies and theories by following scientific approach to		
knowledge development		
PO 4 : Problem solving: Capacity to extrapolate from what one has learned and apply		
their competencies to solve different kinds of non-familiar problems, rather than replicate		
curriculum content knowledge; and apply one's learning to real life situations.		
PO 5 : Analytical reasoning: Ability to evaluate the reliability and relevance of evidence		
identify logical flaws and holes in the arguments of others; analyze and synthesize data		
from a variety of sources; draw valid conclusions and support them with evidence and		
examples, and addressing opposing viewpoints.		
PO 6 : Research-related skills: A sense of inquiry and capability for asking		
relevant/appropriate questions, problem arising, synthesising and articulating; Ability to		
recognise cause-and-effect relationships, define problems, formulate hypotheses, test		
hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict		
cause-and-effect relationships; ability to plan, execute and report the results of an		
experiment or investigation		

PO7: Cooper ation/Team work: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team

PO 8 : Scientific reasoning: Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO 9 : Reflective thinking: Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society

PO 10 : Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 : Self-directed learning: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 : Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13 : Moral and ethical awareness/reasoning: Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14 : Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 15 : Lifelong learning: Ability to acquire knowledge and skills, including "learning

how to learn", that are necessary for participating in learning activities throughout life,
through self-paced and self-directed learning aimed at personal development, meeting
economic, social and cultural objectives, and adapting to changing trades and demands of
work place through knowledge/skill development/reskilling.

Programme	On successful completion of Bachelor of Physics with Computer Applications programme, the
Specific Outcomes	student should be able to:
	PSO1: Disciplinary Knowledge: Understand the fundamental principles, concepts, and
	theories related to physics and computer science. Also, exhibit proficiency in performing
	experiments in the laboratory.
	PSO2: Critical Thinking: Analyse complex problems, evaluate information, synthesize
	information, apply theoretical concepts to practical situations, identify assumptions and biases,
	make informed decisions and communicate effectively
	PSO3: Problem Solving: Employ theoretical concepts and critical reasoning ability with
	physical, mathematical and technical skills to solve problems, acquire data, analyze their
	physical significance and explore new design possibilities.
	PSO4: Analytical & Scientific Reasoning: Apply scientific methods, collect and analyse
	data, test hypotheses, evaluate evidence, apply statistical techniques and use computational
	models.
	PSO5: Research related skills: Formulate research questions, conduct literature reviews,
	design and execute research studies, communicate research findings and collaborate in
	research projects.
	PSO6: Self-directed & Lifelong Learning: Set learning goals, manage their own learning,
	reflect on their learning, adapt to new contexts, seek out new knowledge, collaborate with
	others and to continuously improve their skills and knowledge, through ongoing learning and
	professional development, and contribute to the growth and development of their field.

PO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
PO 1	\checkmark					
PO 2		\checkmark				
PO 3			~			
PO 4				✓		
PO 5					✓	
PO 6						~

Highlights of the Revamped Curriculum:

- Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising statistical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced statistical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Statistics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- The Statistical Quality Control course is included to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience, that connects classroom knowledge to real world experience and to narrow down and focus on the career path.

- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest DBMS and Computer software for Analytics.

Semester	Newly introduced Components	Outcome / Benefits
	Foundation Course To ease the transition of learning from higher secondary to higher education, providing an overview of the pedagogy of learning abstract Statistics and simulating mathematical concepts to real world.	 Instil confidence among students Create interest for the subject
I, II, III, IV	Skill Enhancement papers (Discipline centric / Generic / Entrepreneurial)	 Industry ready graduates Skilled human resource Students are equipped with essential skills to make them employable Training on Computing / Computational skills enable the students gain knowledge and exposure on latest computational aspects Data analytical skills will enable students gain internships, apprenticeships, field work involving data collection, compilation, analysis etc.

Value additions in the Revamped Curriculum:

III, IV, V & VI	Elective papers- An open choice of topics categorized under Generic and Discipline Centric	 Introducing the stakeholders to the State- of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature Students are exposed to Latest topics on
IV	DBMS and Programming skill,	 Computer Science / IT, that require strong statistical background. Emerging topics in higher education / industry / communication network / health sector etc. are introduced with hands-on-training, facilitates designing of statistical models in the respective sectors Exposure to industry moulds students into
	Biostatistics, Statistical Quality Control, Official Statistics, Operations Research	solution providers
II Year Vacation activity	Internship / Industrial Training	Practical training at the Industry/ Banking Sector / Private/ Public sector organizations / Educational institutions, enable the students gain professional

		experience and also become responsible citizens.
V Semester	Project with Viva – voce	 Self-learning is enhanced Application of the concept to real situation is conceived resulting in tangible outcome
VI Semester		 Curriculum design accommodates all category of learners; 'Statistics for Advanced Explain' component will comprise of advanced topics in Statistics and allied fields, for those in the peer group / aspiring researchers; 'Training for Competitive Examinations' – caters to the needs of the aspirants towards most sought - after services of the nation viz, UPSC, ISS, CDS, NDA, Banking Services, CAT, TNPSC group services, etc.
Extra Credits: For Advanced	Learners / Honors degree	• To cater to the needs of peer learners / research aspirants

	✤ Knowledge
	 Problem Solving
Skills acquired from the	✤ Analytical ability
Courses	 Professional Competency
	 Professional Communication
	✤ Transferrable Skill

Credit Distribution for I year UG Programmes

Sem I	Credit	H	Sem II	Credit	Н
Part 1. Language	3	6	Part1.	3	6
– Tamil			Language –		
			Tamil		
Part.2 English	3	6	Part2 English	3	6
1.3 Core Course	5	5	23 Core	5	5
– CC I			Course – CC		
			III		
1.4 Core Course	3	3	2.4 Core	3	3
– CC II			Course – CC		
			IV		
1.5 Elective I	3	4	2.5 Elective I	3	4
Generic/			Generic/		
Discipline			Discipline		
Specific			Specific		
1.6 Elective II	2	2	2.6 Elective II	2	2
Generic/			IGeneric/		
Discipline			Discipline		
Specific			Specific		
1.7 Skill	2	2	2.7 Skill	2	2
Enhancement			Enhancement		
Course			Course		
SEC-1	2	-	SEC-2	2	
1.8 Skill	2	2	2.8 Skill	2	2
Enhancement -			Enhancement		
(Foundation			Course – SEC-3		
Course)					
	23	30		23	30

Template for Curriculum Design for UG Programme in Chemistry

Credit Distribution for UG Programme in Chemistry

B.Sc CHEMISTRY FIRST YEAR

SEMESTER I

Part	List of Courses	Cre dit	Hours per week (L/T/P)
Part I	Language – Tamil	3	6
Part II	English	3	6
Part III	Core Courses & Elective Course 1 (Generic / Discipline Specific)EC1	13	14
Part IV	Skill Enhancement Course SEC-1	2	2
	Foundation Course FC	2	2
		23	30

SEMESTER II

Part	List of Courses	Cre dit	Hours per week (L/T/P)
Part I	Language	3	6
Part II	English	3	6
Part III	Core Courses & Elective Course 1 (Generic / Discipline Specific) EC2	13	14
Part IV	Skill Enhancement Course -SEC-2	2	2
	Skill Enhancement Course -SEC-3 (Discipline /Subject Specific)	2	2
		23	30

*Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. The part IV has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree.

	Methods of Evaluation		
	Continuous Internal Assessment Test		
Internal	Assignments	25 Marks	
Evaluation	Seminars	25 Warks	
	Attendance and Class Participation		
External	End Semester Examination	75 Marks	
Evaluation			
	Total	100 Marks	
	Methods of Assessment		
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions		
Understand/	MCQ, True/False, Short essays, Concept explanations, Short summary or		
Comprehend	Overview		
(K2)			
Application (K3) Suggest idea/concept with examples, Suggest formulae, Solve problems,		formulae, Solve problems,	
	Observe, Explain		
Analyze (K4)	Problem-solving questions, Finish a procedure in many steps, Differentiate		
	between various ideas, Map knowledge		
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pros and cons		
Create (K6)	Create (K6) Check knowledge in specific or offbeat situations, Discussion, Debating or		
	Presentations		

B.Sc Chemistry Curriculum Design First Year

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language	3	6
Part-II	English	3	6
Part-III	General Chemistry–I CC1	5	5
	Quantitative Inorganic estimation (titrimetry) and Inorganic	3	3
	Preparations CC2		
	Allied Mathematics / Biology GE-I	3	4
	Allied Practical I GE-I	2	2
	Skill Enhancement Course SEC-1	2	2
Part-IV	Foundation Course FC	2	2
	Total	23	30

SEMESTER-I

SEMESTER - II

Part	List of Courses	Credit	Hours per week
			(L/T/P)
Part-I	Language	3	6
Part-II	English	3	6
Part-III	General Chemistry–II CC3	5	5
	Qualitative Organic Analysis and Preparation of Organic	3	3
	Compounds CC4		
	Allied Mathematics / Biology- GE III	3	4
	Allied Practical II GE- IV	2	2
	Skill Enhancement Course SEC-2	2	2
Part-IV	Skill Enhancement Course SEC-3 (Discipline / Subject Specific)	2	2
	Cosmetics and Personal care Products		
	Total	23	30

Note: Semesters I& II Major Practical 6 hrs will be allotted in the University Examination.

SEMESTER I

Title of the	GENERAL CHEMISTRY-I										
Course											
Paper No.	Core I										
Category	Core	Year	Ι	Credits	5	Course					
		Semester	Ι			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Higher second	ndary chemis	try								
Objectives of	The course aims at giving an overall view of the										
the course	• various	atomic mod	els ar	nd atomic s	struct	ure					
	• wave pa	article dualit	y of r	natter							
	• periodic	table, peri	odicit	y in prope	erties	and its applica	ation in explaining the				
	-	l behaviour		5 1 1		11	1 0				
	• nature c	of chemical l	ondi	ng and							
				0,							
		ental concep		e		2					
Course Outline	UNIT I A	tomic struct	ture a	and Period	lic tr	ends					
	History of	atom (J.J.	Thom	son, Ruthe	erford	l); Moseley's I	Experiment and Atomic				
	number, At	omic Spectra	a; Bla	ck-Body R	adiati	ion and Planck's	s quantum theory - Bohr's				
	model of	atom; The	Franc	ck-Hertz H	Exper	iment; Interpre	tation of H- spectrum;				
	Photoelectr	ic effect, Co	mpto	n effect; Di	ual na	ture of Matter-	De- Broglie wavelength-				
	Davisson a	and Germer	expe	riment He	isenb	erg's Uncertain	ty Principle; Electronic				
			-			U U	ion principle and Aufbau				
	-					core concepts.					

Unit II

Introduction to Quantum mechanics

Classical mechanics, Wave mechanical model of atom, distinction between a Bohr orbit and orbital; Postulates of quantum mechanics; probability interpretation of wavefunctions, Formulation of Schrodinger wave equation - Probability and electron density-visualizing the orbitals -Probability density and significance of Ψ and Ψ^2 .

Modern Periodic Table

Cause of periodicity; Features of the periodic table; classification of elements -Periodic trends for atomic size- Atomic radii, Ionic, crystal and Covalent radii; ionization energy, electron affinity, electronegativity-electronegativity scales, applications of electronegativity.

Problems involving the core concepts

UNIT-III: Structure and bonding – I

Ionic bond

Lewis dot structure of ionic compounds; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies, Madelung constant; relative effect of lattice energy and solvation energy; Ion polarization – polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds; problems involving the core concepts.

Covalent bond

Shapes of orbitals, overlap of orbitals – σ and Π bonds; directed valency - hybridization; VSEPR theory - shapes of molecules of the type AB₂, AB₃, AB₄, AB₅, AB₆ and AB₇

Partial ionic character of covalent bond-dipole moment, application to molecules of the type A₂, AB, AB₂, AB₃, AB₄; percentage ionic character- numerical problems based on calculation of percentage ionic character.

UNIT-IV: Structure and bonding – II

VB theory – application to hydrogen molecule; concept of resonance - resonance structures of some inorganic species – CO_2 , NO_2 , CO_3^{-2} , NO_3^{-2} ; limitations of VBT; MO theory - bonding, antibonding and nonbonding H₂, C₂, O₂, O₂⁺, O²⁻, O²⁻, N₂, NO, HF, CO;CO₂

magnetic characteristics, comparison of VB and MO theories.

Coordinate bond: Definition, Formation of BF₃, NH₃, NH₄⁺, H₃O⁺ properties

Metallic bond-electron sea model, VB model; Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor – types, applications of semiconductors

Weak Chemical Forces - Vander Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces; Hydrogen bonding – Types, special properties of water, ice, stability of DNA; Effects of chemical force, melting and boilingpoints

UNIT-V: Basic concepts in Organic Chemistry and Electronic effects

Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates; types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates – carbanions, carbocations, carbenes, arynes and nitrynes.Inductive effect - reactivity of alkyl halides, acidity of halo acids, basicity of amines; inductomeric and electromeric effects.

Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines, stability of carbonium ions, carbanions and free

	radicals, reactivity of vinyl chloride, dipole moment of vinyl chloride and
	nitrobenzene, bond lengths; steric inhibition to resonance.
	Hyperconjugation - stability of alkenes, bond length, orienting effect of methyl
	group, dipole moment of aldehydes and nitromethane
	Types of organic reactions- addition, substitution, elimination and
	rearrangements
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC/JAM /TNPSC and others to be solved
Component (isa	(To be discussed during the Tutorial hours)
part of internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	1. Madan, R. D. and Sathya Prakash, Modern Inorganic Chemistry, 2nded.; S.
Text	Chand and Company: New Delhi, 2003.
	2. Rao, C.N. R. University General Chemistry, Macmillan Publication: NewDelhi,
	2000.
	3. Puri, B. R. and Sharma, L. R. Principles of Physical Chemistry,
	38 th ed.;Vishal Publishing Company: Jalandhar, 2002.
	4. Bruce, P. Y. and PrasadK. J. R. Essential Organic Chemistry, Pearson
	Education: New Delhi, 2008.
	5. Dash UN, Dharmarha OP, Soni P.L. Textbook of Physical Chemistry,
	Sultan Chand & Sons: New Delhi,2016

Reference	1. Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4 th ed.;
Books	The Macmillan Company: Newyork,1972.
	2. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS WilliamHeinemann:
	London,1991.
	3. Gurudeep Raj, Advanced Inorganic Chemistry, 26 th ed.; Goel Publishing
	House: Meerut, 2001.
	4. Atkins, P.W. & Paula, J. Physical Chemistry, 10th ed.; Oxford University
	Press: New York, 2014.
	5. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity,
	4 th ed .; Addison, Wesley Publishing Company: India,1993.
Website and	1) <u>https://online courses.nptel.ac.in</u>
e-learning	2) http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm
source	3) http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html
	4) https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding
	5) https://www.chemtube3d.com/

Course Learning Outcomes (for Mapping with POs and PSOs)On completion

of the course the students should be able to

- **CO1:** explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.
- **CO2:** classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.
- **CO3:** apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.
- **CO4:** evaluate the relationship existing between electronic configuration, bonding, geometry ofmolecules and reactions; structure reactivity and electronic effects
- **CO5:** construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules, nature of H bonding and organic reaction mechanisms.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	S
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse	Quantitative Inorganic Estimation (titrimetry) and Inorganic Preparations							
Paper No.	Core II							
Category	Core	Year	Ι	Credits	2	Course		
		Semester	Ι	-		Code		
Instructional	Lecture	Tutorial	Lal	o Practice		Total		
hours per week	-	-	3			3		
Prerequisites	Higher second	ndary chemis	try			1		
Objectives of the	This course	aims at provi	ding	knowledge	on			
course	laborato	ry safety						
	• handling	g glasswares						
	• Quantita	tive estimation	on					
	• preparat	ion of inorga	nic co	ompounds				
Course Outline	Unit I Che	mical Labor	atory	Safety in	Acad	emic Institutio	ons	
	Introduction	- importance	of sa	afety educat	tion fo	or students, con	nmon laboratory hazards,	
	assessment a	and minimiza	tion (of the risk	of the	hazards, prepa	are for emergencies from	
	uncontrolled	hazards; cor	ncept	of MSDS;	impo	rtance and care	of PPE; proper use and	
	operation of	chemical hoc	ods ar	nd ventilation	on syst	tem; fire exting	uishers-types and uses of	
	fire extingui	shers, demons	stratio	on of operat	ion; c	hemical waste	and safe disposal.	
	Common A	pparatus Us	ed in	Quantitati	ive Es	stimation (Volu	umetric)	
	Description	and use of bu	rette,	pipette, sta	ndard	flask, measurir	ng cylinder, conical flask,	
	beaker, funn	el, dropper, c	elamp	, stand, wa	sh bo	ttle, watch glas	s, wire gauge and tripod	
	stand.							
	Principle of	Quantitativ	e Est	imation (V	olum	etric) Equivale	nt weight of an acid, base,	
	salt, reducin	ig agent, oxid	dizing	g agent; co	ncept	of mole, mola	ality, molarity, normality;	
	primary and	secondary sta	andar	ds, preparat	ion of	standard soluti	ons; theories of acid-base	
	redox, comp	lexometric, io	odime	etric and iod	lomet	ric titrations; ir	ndicators - types, theory	
	of acid-base	, redox, metal	l ion a	and adsorpt	ion in	dicators, choice	e of indicators.	

	Unit II Quantitative Estimation(Volumetric)							
	Preparation of standard solution, dilution from stock solution							
	Permanganometry							
	Estimation of sodium oxalate using standard ferrous ammonium sulphate							
	Dichrometry							
	Estimation of ferric alum using standard dichromate (external indicator)							
	Estimation of ferric alum using standard dichromate (internal indicator)							
	Iodometry							
	Estimation of copper in copper sulphate using standard dichromate							
	Argentimetry							
	Estimation of chloride in barium chloride using standard sodium chloride/Estimation of							
	chloride in sodium chloride (Volhard's method)							
	Unit III Complexometry							
	Estimation of hardness of water using EDTA							
	Estimations							
	Estimation of iron in iron tablets							
	Estimation of ascorbic acid.							
	Preparation of Inorganic compounds-							
	Potash alum							
	Tetraammine copper (II) sulphate							
	Hexamminecobalt (III) chloride							
	Mohr's Salt							
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,							
from this course	Professional Communication and Transferable skills.							
Recommended	Reference Books:							
Text	1. Venkateswaran, V.; Veeraswamy, R.; Kulandivelu, A.R. <i>Basic Principles of</i>							
	Practical Chemistry, 2 nd ed.; Sultan Chand &Sons: New Delhi, 1997.							
	<i>2.</i> Nad, A. K.; Mahapatra, B.; Ghoshal, A.; <i>An advanced course in Practical</i>							
	Chemistry, 3 rd ed.; New Central Book Agency: Kolkata, 2007.							
Website ande- learning	Web References: 1) http://www.federica.unina.it/agraria/analytical-chemistry/volumetric- analysis							
source	2) https://chemdictionary.org/titration-indicator/							

Course Learning Outcomes (for Mapping with POs and PSOs)

On successful completion of the course the students should be able to

CO1: explain the basic principles involved in titrimetric analysis and inorganic preparations.

- CO2: compare the methodologies of different titrimetric analysis.
- **CO3:** calculate the concentrations of unknown solutions in different ways and develop the skillto estimate the amount of a substance present in a given solution.
- **CO4:** assess the yield of different inorganic preparations and identify the end point of various titrations.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	S	S	М	S	S
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	М
CO4	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course					
Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	ALL	IED CHEN	IIS	TRY FO	R PI	HYSICAL SC	IENCES I (FOR			
Course		MATHE	M	ATICS &	PH	YSICS STUD	ENTS)			
Paper No.	Generic Elective I									
Category	Generic	Year	I Credits 3 Course							
	Elective	Semester	Ι			Code				
Instructional	Lecture	Tutorial	L	ab Practi	ce	Total				
hours per week	4	-				4				
Prerequisites	Higher secondary c	hemistry								
Objectives of the	This course aims to	o provide kn	lOW	ledge on	the					
course	• basics of atc	omic orbitals	s, c	hemical b	onds	, hybridization	1			
	• concepts of	• concepts of thermodynamics and its applications.								
	• concepts of nuclear chemistry									
	• importance	of chemical	inc	dustries						
	• Qualitative a	and analytic	al	methods.						
Course Outline	UNIT I Chemica	al Bonding	an	d Nuclear	r Ch	emistry				
	Chemical Bondin	ig: Molecul	lar	Orbital 7	Theo	ry-bonding, a	ntibonding, and non-bonding			
	orbitals. Molecula	ar orbital di	agr	ams for H	Hydro	ogen, Helium,	Nitrogen; discussion of bond			
	order and magne	etic propert	ies.	. Nuclear	Che	emistry: Funda	amental particles - Isotopes,			
	Isobars, Isotones	and Isom	ers	-Difference	ces 1	between chem	ical reactions and nuclear			
	reactions - group	displaceme	nt	law. Nucl	ear t	oinding energy	- mass defect - calculations.			
	Nuclear fission ar	nd nuclear f	usi	on - diffe	rence	es – Stellar ene	ergy. Applications of			
	radioisotopes - ca	arbon dating	g, ro	ock dating	g and	medicinal app	olications.			
	Unit II Industria	l Chemistr	y							
	Fuels: Fuel gases	: Natural ga	ls, '	water gas,	, sem	ni water gas, c	arbureted water gas, producer			
	gas, CNG, LPG a	nd oil gas (ma	nufacturin	ig de	tails not requir	ed).			
	Silicones: Synthe	sis, properti	es	and uses of	ofsil	icones.				
	Fertilizers: Urea,	ammonium	sul	lphate, po	tassiu	um nitrate, NP	K fertilizer, superphosphate,			
	triple superphospl	nate.								

UNIT III Fundamental Concepts in Organic Chemistry

Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and stericexamples. Reaction mechanisms: Types of reactions–aromaticity (Huckel's rule)aromatic electrophilic substitution; nitration, halogenation, Friedel- Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.

UNIT IV Thermodynamics and Phase Equilibria

Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. Entropy and its significance. Free energy change and its importance (no derivation). Conditions for spontaneity in terms of entropy and Gibbs free energy. Relationship between Gibbs free energy and entropy. Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag).

UNIT V Analytical Chemistry

Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques – extraction, distillation and crystallization. Chromatography: principle and application of column, paper and thin layer chromatography.

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a part of internal component only, Not to be included in the external examination question paper)	(To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.Veeraiyan, Text book of Ancillary Chemistry; High mount publishing
Text	house, Chennai, first edition, 2009.
	 S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur,2006.
	3. S.ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company,
	NewDelhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan
	Chand & sons, New Delhi, twenty ninth edition, 2007.
Reference Books	5. P.L.Soni, Mohan Katyal, Textbookof Inorganic chemistry; Sultan
	Chandand Company, New Delhi, twentieth edition, 2007.
	6. B.R.Puri, L.R.Sharma, M.S. Pathania, Textbook Physical
	Chemistry; V ishal Publishing Co., New Delhi, forty seventh
	edition, 2018.
	7. B.K,Sharma,IndustrialChemistry;GOELpublishinghouse,Meerut,si
	xteenthedition, 2014.

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

- CO 1: gain in-depth knowledge about the theories of chemical bonding, nuclear reactions and its applications.
- CO 2: evaluate the efficiencies and uses of various fuels and fertilizers
- **CO 3:** explain the type of hybridization, electronic effect and mechanism involved in theorganic reactions.
- **CO 4:** apply various thermodynamic principles, systems and phase rule.
- **CO 5:** explain various methods to identify an appropriate method for the separation of chemical components

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	S
CO3	S	S	S	М	S	S	S	S	S	М
CO4	S	S	М	S	S	S	S	М	М	S
CO5	S	М	S	S	S	М	S	S	М	S

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse		ALLIED CHEMISTRY PRACTICAL FOR PHYSICAL SCIENCES I (For Mathematics and Physics – I Year/I Semester)									
Paper No.	Generic Elective	II									
Category	GenericElective Year I Credits 2 CourseCode										
		Semester	Ι	_							
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	-	-	2			2					
Prerequisites											
Objectives of the	This course at	ims to provid	le knov	wledge on th	ne						
course	• basics of pr	reparation of	solutio	ons.							
	• principles a	nd practical	experi	ence of volu	ımetr	ic analysis					
Course Outline	VOLUMETRIC	ANALYSIS									
	1. Estimat	tion of sodiu	m hyd	roxide using	g sta	ndard sodiumcarbonate.					
	2. Estimat	ion of hydro	chloric	e acid using	stanc	lard oxalic acid.					
	3. Estimat	tion of ferrou	s sulp	hate using s	tanda	rd Mohr's salt.					
	4. Estimat	tion of oxalic	acid u	using standa	rd fei	rrous sulphate.					
	5. Estimat	tion of potass	sium p	ermanganate	e usii	ng standardsodium hydroxide.					
	6. Estimat	tion of magne	esium	using EDTA	۸.						
	7. Estimat	tion of ferrou	s ion u	using diphen	ıyl an	nine as indicator.					
Reference Books	V.Venkateswaran Chemistry; Sulta					u, Basic Principles ofPractical 97.					

Course Learning Outcomes (for Mapping with POs and PSOs) On

completion of the course the students should be able to

CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.

CO 2: design, carry out, record and interpret the results of volumetric titration.

CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	М	S	М	S	М	S
CO3	S	S	S	М	М	S	S	М	S	М
CO4	S	S	S	М	S	М	М	S	S	М

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos					

Level of Correlation between PO's and CO's

Title of the				FOOD CH	IEMI	STRY	
Course							
Paper No	SEC I						
Category	SEC	Year	Ι	Credits	2	Course	
		Semester	Ι	_		Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per	2	-	-			2	
Week							
Prerequisites	Higher seco	Indary Chemi	stry				
Objectives of	This course	aims at givin	g an o	verall view o	f the		
the course	• Types o	f food					
	• Food ad	ulteration and	d poise	ons			
	• Food ad	ditives and p	reserva	ation			
Course Outline	UNIT I Fo	od Adulterat	tion				
	Sources of f	food, types, a	dvanta	ges and disad	vanta	ges. Food adult	eration - contamination
	of wheat, ri	ce, milk, but	ter etc	. with clay st	tones,	water and toxi	c chemicals -Common
	adulterants,	Ghee adulte	erants	and their de	tection	n. Detection of	f adulterated foods by
	simpleanaly	tical techniqu	les.				
	Unit-II Foo	od Poison					
	Food poisor	ns - natural p	oisons	(alkaloids -	nephr	otoxin) - pestic	ides, (DDT, BHC,
	Malathion)	-Chemical po	isons -	- First aid for	poisc	on consumed vie	ctims.

	Unit-III Food Additives
	Food additives -artificial sweeteners - Saccharin - Cyclomate and Aspartate Food flavours -esters,
	aldehydes and heterocyclic compounds – Food colours
	- Emulsifying agents - preservatives -leavening agents. Baking powder -
	yeast – tastemakers – MSG - vinegar.
	UNIT-IV Beverages
	Beverages-softdrinks-soda-fruitjuices-alcoholicbeverages-examples. Carbonation-addictionto alcohol-
	diseases of liver and social problems
	UNIT-V Edible Oils
	Fats and oils - Sources of oils - production of refined vegetable oils - preservation. Saturated and
	unsaturated fats - iodine value - role of MUFA and PUFA in preventing heart diseases-determination of
	iodine value, RMvalue, saponification values and their significance.
Recommend	1. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house,2010.
ed Text	2. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand& Co.Publishers, second
	edition, 2006.
	3. Food Chemistry, Dr. L. Rakesh Sharma, Evincepub publishing, 2022.
	4. Food processing and preservation, G. Subbulakshmi, Shobha A Udipi, Pdmini S Ghugre, New age
	international publishers, second edition, 2021.

Reference	1. HD. Belitz, Werner Grosch, Food Chemistry Springer Science & Business Media, 4 th Edition,
Books	2009.
	2. M.Swaminathan, Food Science and Experimental Foods, Ganesh andCompany,1979.
	3. Hasenhuettl, Gerard. L.; Hartel, Richard. W. Food Emulsifiers and their applications Springer
	New York 2nd ed. 2008.
	4. Food Chemistry, HD. Belitz, W. Grosch, P. Schieberle, Springer, fourth revised and
	extendededition, 2009.
	5. Principles of food chemistry, John M. deMan, John W. Finley, W. Jefferey
	Hurst, Chang Yong Lee, Springer, Fourth edition, 2018.
Website and	
e-learning	https://onlinecourses.nptel.ac.in <u>http://cactus.dixie.edu/smblack/chem1010/lec</u>
Source	

CO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
РО										
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Course Year I Credits 2 Course Category SEC Year I Credits 2 Course Instructional Lecture Tutorial Lab Practice Total hours perweek 2 - - 2 Prerequisites Higher secondary chemistry 2 2 Objectives of This course aims at providing an overall view of the • the course of This course aims at providing characters • different states of mater and their general properties • types of chemical bonding characters • different states of spectroscopy • Course UNIT-I Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars. Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-Rules governing electronic configuration in various its atomic orbitals.												
Category SEC Year I Credits 2 Course Code Instructional hours perweek Lecture Tutorial Lab Practice Total Prerequisites Higher secondary chemistry 2 - 2 Objectives of This course aims at providing an overall view of the • • atom structure and electronic configuration • types of chemical bonding characters • different states of mater and their general properties • nomenclature of and isomerism in organic compounds • basic concepts of spectroscopy VIIT-I Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
Semester I Code Instructional hours perweek Lecture Tutorial Lab Practice Total hours perweek 2 - - 2 Prerequisites Higher secondary chemistry 0 This course aims at providing an overall view of the Objectives of This course aims at providing an overall view of the - atom structure and electronic configuration the course - atom structure and electronic configuration - types of chemical bonding characters odifferent states of mater and their general properties - nomenclature of and isomerism in organic compounds - Course UNIT-I Structure of atom and periodic classification of Elements and properties. - Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars - - Stotopes – Orbitals-Quantum number and their significance. Shapes of s.p and d orbitals-												
Instructional hours perweek Lecture Tutorial Lab Practice Total hours perweek 2 - - 2 Prerequisites Higher secondary chemistry 0 This course aims at providing an overall view of the - Objectives of This course aims at providing an overall view of the - - • atom structure and electronic configuration - types of chemical bonding characters - • different states of mater and their general properties - nomenclature of and isomerism in organic compounds - • basic concepts of spectroscopy - - - - Course UNIT-I Structure of atom and periodic classification of Elements and properties. - - Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars - - -												
hours perweek 2 - - 2 Prerequisites Higher secondary chemistry - 2 Objectives of This course aims at providing an overall view of the atom structure and electronic configuration types of chemical bonding characters different states of mater and their general properties nomenclature of and isomerism in organic compounds basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
Prerequisites Higher secondary chemistry Objectives of This course aims at providing an overall view of the the course • atom structure and electronic configuration • types of chemical bonding characters • • different states of mater and their general properties • • nomenclature of and isomerism in organic compounds • • basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
Objectives of This course aims at providing an overall view of the the course This course aims at providing an overall view of the atom structure and electronic configuration types of chemical bonding characters different states of mater and their general properties nomenclature of and isomerism in organic compounds basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
the course • atom structure and electronic configuration • types of chemical bonding characters • different states of mater and their general properties • nomenclature of and isomerism in organic compounds • basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
 types of chemical bonding characters different states of mater and their general properties nomenclature of and isomerism in organic compounds basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties.												
 different states of mater and their general properties nomenclature of and isomerism in organic compounds basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties.												
 nomenclature of and isomerism in organic compounds basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals- 	• types of chemical bonding characters											
 basic concepts of spectroscopy Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals- 												
Course UNIT-I Outline Structure of atom and periodic classification of Elements and properties. Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
OutlineStructure of atom and periodic classification of Elements and properties.Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –IsobarsIsotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
OutlineStructure of atom and periodic classification of Elements and properties.Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –IsobarsIsotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
Atom structure-Fundamental particles-Atomic mass- Atomic number – Isotopes –Isobars Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
Isotones – Orbitals-Quantum number and their significance. Shapes of s,p and d orbitals-												
	3 —											
Rules governing electronic configuration in various its atomic orbitals.												
Periodic table-periodic laws (Mendeleev and Mosley)- Classification of elements into s,p,), d											
and f-blocks .Metals-Non metals-Periodic properties-Concept, Variation and factors												
affectingvarious periodic properties-Inert pair effect.												
Unit-II												
Chemical Bonding												
Definition- Types of chemical bond-Ionic bond- Ion polarization - Dipole moment and												
Percentage of ionic character-Covalent bond-Definition –Postulates of Valence bond theo	ory											
and Concept of hybridization (sp, sp ² , sp ³ , sp ³ d, sp ³ d ² , dsp ² , d ² sp ³) –Magnetic properties -	-											

Paramagnetic – Diamagnetic-Ferromagnetic. Co-ordinate covalent bond-Definition – Examples-Co-ordination compounds (basic concepts only).

UNIT III Nomenclature and Isomerism in Organic compounds

Carbon compounds- Uniqueness of carbons- Classification of hydrocarbons - IUPAC Nomenclature of Organic compounds

Isomerism: Structural and Stereoisomerism

Structural Isomerism: Chain isomerism, Functional isomerism, Positional isomerism and Meta isomerism.

Stereoisomerism: Geometrical and Optical isomerism-Chiral molecule- Enantiomers-Diastereomers- Meso compounds-Racemic mixture.

UNIT IV States of Matter

Gaseous state: Kinetic theory of gases- Ideal and Non-ideal gases- Ideal gas equation-Deviation of ideal gas from ideal behavior -vander Waal's equation and Liquification of gases.

Liquids :Intermolecular forces, Vapour pressure and Boiling point of liquid -

Surfacetension – Viscosity- Factors affecting surface tension and viscosity.

Solids: Definition - Characteristics of solids- Amorphous and Crystalline solids - Space lattice and unit cells - Close packed structure of solids-Radius ratio rule.

UNIT V Introduction to Spectroscopy

Electromagnetic radiation- General characteristics of Wave – Wavelength – Frequency – Amplitude – Wave number - Electromagnetic spectrum- Absorption and Emission spectrum- Quantization of Energy level - Selection rule - Intensity of the Spectral lines – Width of Spectral lines. Types of spectroscopy: Microwave spectroscopy, Infrared spectroscopy, UV-Visible spectroscopy, Nuclear Magnetic Resonance spectroscopy, Electron spin resonance spectroscopy.

Text Books	 B.R Puri, L.R.Sharma, K.C. Kalia, Principles of Inorganic chemistry, Milestone Publishers and Distributors, New Delhi, 2012. B.R. Puri and L.R.Sharma, 38th edition, Vishal Publishing company, Jalendar 2002. K.S, Tewari, S.N. Mehrothra and N.K.Vishnoi, Text book of Organic Chemistry, 2nd edition Vikas publishing House, New Delhi, 1998. 								
Reference books	 R.D. Madan, Sathya Prakash, Mordern Inorganic chemistry 2nd edition, S.Chand and company, New Delhi, 2003. B.S.Bhal, Arun Bhal, Advanced Organic chemistry, 3rd edition, S.Chand and company, New Delhi, 2003. U.N.Dash, O.P.Dharmarha, P.L.Soni, Textbook of Physical Chemistry, Sultan Chand & sons, New Delhi, 2016. Y.R.Sharma Organic spectroscopy Principles and Chemical applications, S.Chand&Company PVT Ltd ,2002. C.N.Banwell, Fundamentals of spectroscopy Tata McGraw Hill, 1983. 								
Website and	https://onlinecourses.nptel.ac.inhttp://cactus.dixie.edu/smblack/chem1010/lec								
e-learning									
Source									

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of

the course the students should be able to

CO1: learn about atom structure and periodic properties.

CO2: gain knowledge on types of chemical bonding

CO3: explain different states of matter

CO4: discussion on nomenclature and isomerism in organic compounds

CO5: knowledge on electromagnetic radiation and its interation with matter

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	М	S	S	М	S	М
CO5	S	М	S	S	S	S	S	S	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

SEMESTER II

Title of the	GENERAL CHEMISTRY-II									
Course										
Paper No.	Core III									
Category	Core	Year	Ι	Credits	5	Course				
		Semester	II	-		Code				
Instructional	Lecture	Tutorial	Lal	Practice	1	Total				
hours per week	4	1	-			5				
Prerequisites	General Ch	emistry I	I							
Objectives of the	This course	aims at prov	viding	g an overal	l viev	w of the				
course	• chemist	ry of acids, b	bases	and ionic e	equili	ibrium				
	• properti	es of s and p	-bloc	k elements						
	• chemist	ry of hydroc	arbor	IS						
	 applicat 	ions of acids	and	bases						
	 compou 	nds of main	blocl	k elements	and l	hydrocarbons				
Course Outline	UNIT-I A	cids, bases	and	Ionic equil	ibria	- I				
	Concepts o	f Acids and	Base	s - Arrheni	us co	oncept, Bronsted	-Lowry concept, Lewis			
	concept; Re	elative streng	ths o	f acids, bas	ses ai	nd dissociation c	constant; dissociation of			
	poly basic	acids, ionic	proc	luct of wa	ter, j	pH scale, pH o	f solutions; Degree of			
	dissociation	i, common i	on ef	fect, factor	s affe	ecting degree of	dissociation; acid base			
	indicators,	theory of ac	id ba	ase indicato	ors –	action of phen	olphthalein and methyl			
	orange, titra	ation curves -	- use	of acid ba	se in	dicators;				
	Buffer solu	itions – type	es, n	nechanism	of b	uffer action in	acid and basic buffer,			
	Henderson-	Hasselbalch	equa	tion;						
	Salt hydrol	ysis - salts o	f wea	ak acids and	d stro	ong bases, weak	bases and strong acids,			
	weak acids	and weak ba	ases ·	- hydrolysis	s con	stant, degree of	hydrolysis and relation			
		drolysis cons		-	-					
		-		ermination	anc	applications;	numerical problems			
	involving th	ne core conc	epts.							

Unit-II Chemistry of s - Block Elements

Hydrogen: Position of hydrogen in the periodic table. Alkali metals: Comparative study of the elements with respect to oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of Li with Mg. Preparation, properties and uses of NaOH, Na2CO3, KBr, KClO3 alkaline earth metals. Anomalous behaviour of Be.

Chemistry of p- Block Elements (Group 13 & 14)

preparation and structure of diborane and borazine. Chemistry of borax. Extraction of Al and its uses. Alloys of Al.

comparison of carbon with silicon. Carbon-di-sulphide – Preparation, properties, structure and uses. Percarbonates, per mono carbonates and per dicarbonates.

UNIT-III Chemistry of p- Block Elements (Group 15-18)

General characteristics of elements of Group 15; chemistry of H₂N-NH₂, NH₂OH, NH₃ and HNO₃. Chemistry of PH₃, PCl₃, PCl₅, POCl₃, P₂O₅ and oxy acids of phosphorous (H₃PO₃and H₃PO₄).

General properties of elements of group16 - Structure and allotropy of elements - chemistry of ozone - Classification and properties of oxides - oxides of sulphur and selenium – Oxy acids of sulphur (Caro's and Marshall's acids).

Chemistry of Halogens: General characteristics of halogen with reference to electronegativity, electron affinity, oxidation states and oxidizing power. Peculiarities of fluorine. Halogen acids (HF, HCl, HBr and HI), oxides and oxy acids (HClO₄). Inter-halogen compounds (ICl, ClF₃, BrF₅ and IF₇), pseudo halogens [(CN)₂ and (SCN)₂] and basic nature of Iodine.

Noble gases: Position in the periodic table. Preparation, properties and structure of XeF_2 , XeF_4 , XeF_6 and $XeOF_4$; uses of noble gases - clathratecompounds.

UNIT-IV

Hydrocarbon Chemistry-I

Petroproducts: Fractional distillation of petroleum; cracking, isomerisation, alkylation, reforming and uses.

Alkenes-Nomenclature, general methods of preparation – Mechanism of elimination reactions – E1 and E2 mechanism - factors influencing – stereochemistry – orientation – Hofmann and Saytzeff rules. Reactions of alkenes – addition reactions – mechanisms – Markownikoff's rule, Kharasch effect, oxidation reactions – hydroxylation, oxidative degradation, epoxidation, ozonolysis; polymerization.

Alkadienes

Nomenclature - classification – isolated, conjugated and cumulated dienes; stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to conjugated dienes – Diels–Alder reactions – polymerisation – polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene.

Alkynes

Nomenclature; general methods of preparation, properties and reactions; acidicnature of terminal alkynes and acetylene, polymerisation and isomerisation.

Cycloalkanes: Nomenclature, Relative stability of cycloalkanes, Bayer's strain theory and its limitations. Conformational analysis of cyclohexane, mono and di substituted cyclohexanes.

Geometrical isomerism in cyclohexanes.

UNIT-V

Hydrocarbon Chemistry - II

Benzene: Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's $(4n+2)\pi e^{-}$ rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenations.

	 Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene Effect of substituent – orientation and reactivity. Polynuclear Aromatic hydrocarbons: Naphthalene – nomenclature, Haworth synthesis; physical properties, reactions – electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel – Crafts acylation & alkylation, preferential substitution at o-,p- or m- position – reduction, oxidation – uses. Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and Haworth synthesis; physical properties; reactions - Diels-Alder reaction, preferential substitution at C-9 and C-10; uses.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC/JAM /TNPSC others to be solved
Component (is a part of internal component only,Not to be included in the external examination question paper)	(To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
RecommendedText	 Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nded, S.Chand and Company, New Delhi. Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003), Advanced Inorganic Chemistry, 17th ed., S. Chand and Company, New Delhi. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3rd ed., S. Chand and Company, New Delhi. Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of Organic Chemistry, 2nd ed., Vikas Publishing House, New Delhi. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry, 38th ed., Vishal Publishing Company, Jalandhar.

Reference	1. Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4 th										
Books	ed., The Macmillan Company, Newyork.										
	2. Barrow G M, (1992), Physical Chemistry, 5 th ed., Tata McGraw Hill, NewDelhi.										
	3. Lee J D, (1991), Concise Inorganic Chemistry, 4 th ed., ELBS William										
	Heinemann, London.										
	4. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and Reactivity, 4 th										
	ed., Addison Wesley Publishing Company, India.										
	5. Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol – I, 26 th ed.,Goel										
	Publishing House, Meerut.										
	6. Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry,8 th ed., Goel										
	Publishing House, Meerut.										
Website and	https://onlinecourses.nptel.ac.inhttp://cactus.dixie.edu/smblack/chem1010/lec										
e-learning	ture_notes/4B.html										
source	http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64										
	-atomic-structure-and-chemical-bonding										
	MOOC components										
	http://nptel.ac.in/courses/104101090/										
	Lecture 1: Classification of elements and periodic properties										
	http://nptel.ac.in/courses/104101090/										

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

- **CO1:** explain the concept of acids, bases and ionic equilibria; periodic properties of s and pblock elements, preparation and properties of aliphatic and aromatic hydrocarbons
- **CO2:** discuss the periodic properties of sand p- block elements, reactions of aliphatic and aromatic hydrocarbons and strength of acids
- **CO3:** classify hydrocarbons, types of reactions, acids and bases, examine the properties s and pblock elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
- **CO4:** explain theories of acids, bases and indicators, buffer action and important compounds of s-block elements
- **CO5:** assess the application of hard and soft acids indicators, buffers, compounds of s and p- block elements and hydrocarbons

CO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	М	S	S	S	М
CO2	М	S	S	S	М	S	S	М	М	S
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	S	М	М
CO5	S	М	S	S	М	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	QUAL	ITATIVE (NIC ANA		SIS AND PR	EPARATION OF ORGANIC
Course	C IV						
Paper No.	Core IV		Г <u>–</u>	1		1	
Category	Core	Year	Ι	Credits	2	Course	
						Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week							
	-	-	3			3	
Prerequisites	General C	Chemistry II	-				
Objectives of	This cours	se aims at p	orovid	ing know	ledg	ge on	
the course	• labora	tory safety					
	• handli	ng glass wa	ires				
	• analys	is of organi	ic con	npounds			
	• prepar	ation of org	ganic	compound	ls		
Course Outline	UNIT I						
	Safety rul	es, symbols	s and	first-aid in	n cł	nemistry labor	ratory
	Basic idea	s about B	unsen	burner, it	s op	peration and p	parts of the flame. Chemistry
	laboratory	glassware	–basi	s informa	tion	and uses.	
	Unit II						
	Qualitati	ve Organic	Ana	lysis			
	Prelimina	ary examina	tion,	detection	of s	pecial elemer	nts - nitrogen, sulphur andhalogens
		-				-	and unsaturation, identification of
		l groups us					
			-	2			

Confirmation of functional groups									
• monocarboxylic acid, dicarboxylic acid									
• monohydric phenol, polyhydric phenol									
• aldehyde, ketone, ester									
• carbohydrate (reducing and non-reducing sugars)									
• primary, secondary, tertiary amine									
• monoamide, diamide, thioamide									
• anilide, nitro compound									
• Preparation of derivatives for functional groups									
UNIT III									
Preparation of Organic Compounds									
i. Nitration - picric acid from Phenol									
ii. Halogenation - p-bromo acetanilide from acetanilide									
iii. Oxidation - benzoic acid from Benzaldehyde									
iv. Microwave assisted reactions in water:									
v. Methyl benzoate to Benzoic acid									
vi. Salicylic acid from Methyl Salicylate									
vii. Rearrangement - Benzil to Benzilic Acid									
viii. Hydrolysis of benzamide to Benzoic Acid									
Separation and Purification Techniques (Not for Examination)									
1. Purification of organic compounds by crystallization (from water / alcohol)and									
distillation									
2. Determination of melting and boiling points of organic compounds.									
3.Steam distillation - Extraction of essential oil from citrus fruits/eucalyptusleaves.									

	4. Chromatography (any one) (Group experiment)
	4. Chromatography (any one) (Group experiment)
	(i) Separation of amino acids by Paper Chromatography
	(ii)Thin Layer Chromatography - mixture of sugars / plant pigments /permanganate dichromate.
	 (iii) Column Chromatography - extraction of carotene, chlorophyll and xanthophyll from leaves / separation of anthracene - anthracene picrate.
	5. Electrophoresis – Separation of amino acids and proteins.
	(Demonstration)
	6. Isolation of casein from milk/Determination of saponification value of oil or
	fat/Estimation of acetic acid from commercial vinegar. (Any one Group experiment)
	(4,5& 6–not for ESE)
ReferenceBooks	1. Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. Basic Principles of Practical
	Chemistry, 2nd ed.; Sultan Chand: New Delhi, 2012.
	2. Manna, A.K. Practical Organic Chemistry, Books and Allied: India, 2018.
	3. Gurtu, J. N; Kapoor, R. Advanced Experimental Chemistry (Organic), Sultan
	Chand: New Delhi, 1987.
	4. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. Vogel'sTextbook
	of Practical Organic Chemistry, 5th ed.; Pearson: India, 1989.
Website ande-	
learning	https://www.vlab.co.in/broad-area-chemical-sciences
Source	hopen, a a a a a a a a a a a a a a a a a a a

Course Learning Outcomes (for Mapping with POs and PSOs) On completion of the course the students should be able to

CO1: observe the physical state, odour, colour and solubility of the given organic compound.

- **CO2:** identify the presence of special elements and functional group in an unknown organic compound performing a systematic analysis.
- **CO3:** compare mono and dicarboxylic acids, primary, secondary and tertiary amines, mono and diamides, mono and polyhydric phenols, aldehyde and ketone, reducing and non-reducing sugars and explain the reactions behind it.

CO4: exhibit a solid derivative with respect to the identified functional group.

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	S
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	М
CO4	S	S	М	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	ALLI	ALLIED CHEMISTRY FOR PHYSICAL SCIENCES II (FOR										
Course		MATHE	MA	ATICS &	: PH	YSICS STU	DENTS)					
Paper No.	Generic Elective I	II										
Category	Generic	Year	Ι	Credits	3	Course						
	Elective	Semester	II			Code						
Instructional	Lecture	Tutorial	L	ab Practi	ce	Total						
hours per week	4	-				4						
Prerequisites	Higher secondary of	chemistry										
Objectives of the	This course aims a	This course aims at providing knowledge on the										
course	Co-ordination Chemistry and Water Technology											
	Carbohydrates and Amino acids											
	basics and applications of electrochemistry											
						y 515						
	Various photoe	hemical phe	eno	menon								
Course Outline	UNIT I											
	Co-ordination Ch	emistry and	d V	Vater Te	chno	logy						
		-					enclature - Werner'stheory -					
							to [Ni(CO)4], $[Ni(CN)4]^{2}$					
	,[Co(CN)6] ³⁻ Chela	tion -Biolog	gica	l role of H	Iaem	oglobin and C	Chlorophyll (elementary idea)					
							er Technology: Hardness of					
					er u	sing EDTA m	ethod, zeolite method-					
	Purification technic	ques-BOD,	CO	D.								
	Unit II Carbohy	drates and	Ar	nino acid	s							
	Carbohydrates: Cl	lassification	, pr	eparation	and	properties of g	glucose, fructose and sucrose.					

	Discussion of open chain ring structures of glucose and fructose. Glucose -fructose
	interconversion. Properties of starch and cellulose. Amino acids: Classification -
	preparation and properties of alanine, preparation of dipeptides using Bergmann method.
	RNA and DNA (elementary idea only).
	UNIT III Electrochemistry
	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard
	electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product
	of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric
	method – buffer solutions and its biological applications - electroplating - Nickel and
	chrome plating – Types of cells -fuel cells-corrosion and its prevention.
	UNIT IV Kinetics and Catalysis
	Order and molecularity. Integrated rate expression for I and II (2A Products) order
	reactions. Pseudo first order reaction, methods of determining order of a reaction – Half-
	life period - Catalysis - homogeneous and heterogeneous, catalyst used in Contact and
	Haber's processes. Concept of energy of activation and Arrhenius
	equation.
	UNIT V Photochemistry
	Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence,
	Quantum yield - Hydrogen-chloride reaction. Phosphorescence, fluorescence,
	chemiluminescence and photosensitization and photosynthesis (definition with
	examples).
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
1101000101101	

Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mountpublishing house,
Text	Chennai, first edition,2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications,
	Karur,2006.
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand andCompany, New
	Delhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; SultanChand & sons,
	New Delhi, twenty ninth edition, 2007.
Reference Books	1. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; SultanChand and
	Company, New Delhi, twentieth edition, 2007.
	2. R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry;
	Vishal Publishing Co., New Delhi, forty seventh edition, 2018.
	3K, Sharma, Industrial Chemistry; Meerut, sixteenth edition, 2014.
Website and	
e-learning	
source	https://onlinecourses.nptel.ac.in <u>http://cactus.dixie.edu/smblack/chem1010/lec</u>
	ture_notes/4B.html

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- **CO 1:** write the IUPAC name for complex, different theories to explain the bonding incoordination compounds and water technology
- CO 2: explain the preparation and property of carbohydrate, amino acids and nucleic acids.
- CO 3: apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuelcells.
- CO 4: identify the reaction rate, order for chemical reaction and explain the purpose of acatalyst.
- **CO 5:** outline the various type of photochemical process.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	М	S	S	S
CO2	S	М	S	S	М	S	М	S	М	S
CO3	S	S	S	S	S	S	М	S	М	S
CO4	S	М	S	S	S	М	S	S	S	S
CO5	S	М	М	S	М	S	М	S	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Title of the Course Paper No.	ALLIED CHEMISTRY PRACTICAL FOR PHYSICAL SCIENCES (For Mathematics and Physics – I Year /II Semester) Generic Elective IV										
Category	Generic	Year	Ι	Credits	3	Course					
	Elective	Semester	II	-		Code					
Instructional	Lecture	Tutorial	Lab Pi	actice		Total					
hours per week	-	-	2			2					
Prerequisites		1	1			1					
Objectives of the	This course ai	This course aims to provide knowledge on									
course	identification of organic functional groupsdifferent types of organic compounds with respect to theirproperties.										
Course Outline		on of elemen		-	•		<u>c</u>				
Reference Books	 SYSTEMATIC ANALYSIS OF ORGANIC COMPOUNDS The analysis must be carried out as follows: (a) Functional group tests [phenol, acids (mono & di) aromatic primary amine, amides (mono & di), aldehydeand glucose]. (b) Detection of elements (N, S, Halogens). (c) To distinguish between aliphatic and aromaticcompounds. (d) To distinguish – Saturated and unsaturated compounds V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles ofPractical 										
	Chemistry; Sulta	,				<i>,</i>		- interpre			

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.CO

2: design, carry out, record and interpret the results of volumetric titration.

CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	М	S	S	S
CO2	S	S	S	S	М	S	S	S	М	S
CO3	S	S	S	М	S	М	S	М	S	М
CO4	S	S	S	М	S	S	М	S	S	М

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of					
Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Title of the course	DAIRY CHEMISTRY										
Paper No	SEC II	SEC II									
Category	SEC	Year	Year I Credits 2			Course					
		Semester	II	-		Code					
Instructional	Lecture	Tutorial	Lab Prac	tice	I	Total					
hours per week	2	-	-			2					
Prerequisites	Higher second	dary chemist	try								
Objectives of	This course a	ims at provi	ding an over	rall view of	the						
the course	• chemistry of milk and milk products										
	• processing of milk										
	• preservation and formation of milk products.										
Course	UNIT I										
Outline	Composition	of Milk									
	Milk-definition	on-general c	composition	of milk-	constitue	nts of milk - li	pids, proteins,				
	carbohydrates	s, vitamins a	nd minerals	- physical p	roperties	s of milk - colour,	odour, acidity,				
				•		cting the composi					
				lizer- examp	oles and t	their detection- est	timation of fat,				
	acidity and to	tal solids in	milk.								
	UNIT II										
	Processing of	f Milk									
				-		milk, physico – ch	-				
			-		-	zation – types of	_				
				erature Sho	rt Time)	 Vacuum pasteu 	rization – Ultra				
	High Tempera	ature Pasteur	rization.								

UNIT III

Major Milk Products

Cream - definition - composition - chemistry of creaming process - gravitational and centrifugal methods of separation of cream - estimation of fatin cream. Butter - definition -composition - theory of churning – desi butter - salted butter, estimation of acidity and moisture content in butter. Ghee - major constituents - common adulterants added to ghee and their detection – rancidity - definition - prevention - antioxidants and synergists - natural and synthetic.

UNIT IV

Special Milk

Standardised milk - definition - merits - reconstituted milk - definition - flowdiagram of manufacture - Homogenised milk - flavoured milk - vitaminised milk - toned milk - Incitation milk - Vegetable toned milk - humanized milk - condensed milk - definition, composition and nutritive value.

UNIT V

Fermented and other Milk Products

Fermented milk products – fermentation of milk - definition, conditions,cultured milk - definition of culture - example, conditions - cultured cream,butter milk - Bulgarious milk -acidophilous milk – Yoheer Indigeneousproducts- khoa and chhena definition -Ice cream -definition-percentagecomposition-types-ingredients-manufacture of ice– cream, stabilizers - emulsifiersandtheirrole-milkpowder-definitionneedformakingmilkpowder- dryingprocess-types of drying.

Recommended	1. K. Bagavathi Sundari, Applied Chemistry, MJP Publishers, first edition, 2006.
Text	2. K. S. Rangappa and K.T. Acharya, Indian Dairy Products, Asia PublishingHouse
	New Delhi, 1974.
	3. Text book of dairy chemistry, M.P. Mathur, D. Datta Roy, P. Dinakar, IndianCouncil
	of Agricultural Research, 1 st edition, 2008.
	4. A Text book of dairy chemistry, Saurav Singh, Daya Publishing house, 1 st
	edition,2013.
	5. Text book of dairy chemistry, P. L. Choudhary, Bio-Green book publishers, 2021.
Reference	1. Robert Jenness and S. Patom, Principles of Dairy Chemistry, S.Wiley, NewYork,
Books	2005.
	2. F.P.Wond, Fundamentals of Dairy Chemistry, Springer, Singapore, 2006.
	3. Sukumar De, Outlines of Dairy Technology, Oxford University Press, NewDelhi,
	1980.
	4. P.F.Fox and P.L.H. Mcsweeney, Dairy Chemistry and Biochemistry, Springer,
	Second edition, 2016.
	5. Dairy chemistry and biochemistry, P. F. Fox, T. Uniacke-Lowe, P.L.H.
	McSweeney, J.A. OMahony, Springer, Second edition, 2015.
Website and	e-pathshala
e-learning	
source	

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

- CO 1: understand about general composition of milk constituents and its physical properties.
- **CO 2:** acquire knowledge about pasteurization of Milk and various types of pasteurization -Bottle, Batch and HTST Ultra High Temperature Pasteurization.
- CO 3: learn about Cream and Butter their composition and how to estimate fat in cream and Ghee
- CO 4: explain about Homogenized milk, flavoured milk, vitaminised milk and toned milk.
- CO 5: have an idea about how to make milk powder and its drying process types of drying

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S	S	S	S	М	S	S	М	S	М
CO2	М	S	S	S	М	S	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S	S
CO4	S	S	М	S	S	S	S	М	S	М
CO5	S	М	S	S	S	S	S	S	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	COSMETICS AND PERSONAL GROOMING									
course										
Paper No	SEC-III (Disc	SEC-III (Discipline Specific)								
Category	SEC	Year	I I/II	Credits	2	Course				
		Semester				Code				
Instructional	Lecture	Tutorial	Lab Prac	tice	I	Total				
hours per week	2	-	-			2				
Prerequisites	Higher secon	dary chemist	try							
Objectives of	This course aims at familiarizing the students with									
the course	• formulations of various types of cosmetics and their significance									
	• hair, skin and dental care									
	makeup preparations and personal grooming									
Course	UNIT I Skir	n care								
Outline	Nutrition of the skin, skin care and cleansing of the skin; face powder – ingredients; creams									
	and lotions – cleansing, moisturizing all purpose, shavingand sunscreen (formulation									
	only); Gels -	- formulation	n and advan	tages; astrii	ngent ar	nd skin tonics – key in	ngredients,			
	skin lightness, depilatories.									
	UNIT II									
	Hair care									
	Shampoos - types - powder, cream, liquid, gel - ingredients; conditioner - types -									
	ingredients									
	Dental care									
	Tooth pa	stes – ingred	ients – mou	th wash						

	UNIT III
	Make up
	Base - foundation - types - ingredients; lipstick, eyeliner, mascara, eyeshadow,
	concealers, rouge
	UNIT IV
	Perfumes
	Classification - Natural – plant origin – parts of the plant used, chief constituents; animal
	origin – amber gries from whale, civetone from civet cat, musk from musk deer; synthetic
	 classification emphasizing- characteristics – esters – alcohols – aldehydes – ketones
	elassification emphasizing enalucionstics esters alconois aldenyaes ketones
	UNIT V
	Beauty treatments
	Facials - types – advantages – disadvantages; face masks – types; bleach -types –
	advantages– disadvantages; shaping the brows; eyelash tinting; perming
	– types; hair colouring and dyeing ; permanent waving – hair straightening; wax
	types – waxing; pedicure, manicure - advantages – disadvantages
Recommended	1. Thankamma Jacob, (1997) Foods, drugs and cometics – A consumer guide,
Text	Macmillan publication, London.
Reference	1. Wilkinson J B E and Moore R J, (1997) Harry's cosmeticology, 7 th ed., Chemical
Books	Publishers, London.
	2. George Howard, (1987)Principles and practice of perfumes and cosmetics, Stanley
	Therones, Chettenham
Website and	1. http://www.khake.com/page75.html
e-learning	2. Net.foxsm/list/284
source	
<u> </u>	

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- CO1: know about the composition of various cosmetic products
- CO2 understand chemical aspects and applications of hair care and dental care and skincare products.
- CO3 understand chemical aspects and applications of perfumes and skin care products.
- CO4 to understand the methods of beauty treatments their advantages and disadvantage
- CO5 understand the hazards of cosmetic products.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	S	М	S
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	М	S	S	S	S	М	М	S
CO5	S	М	S	S	М	S	S	S	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0